排列组合c84用符号C(n,m)表示,m≦n。
公式是:C(n,m)=A(n,m)/m! 或 C(n,m)=C(n,n-m)。
例如:C(5,3)=A(5,3)/[3!x(5-3))!]=(1x2x3x4x5)/[2x(1x2x3)]=10.
排列用符号A(n,m)表示,m≦n。
计算公式是:A(n,m)=n(n-1)(n-2)……(n-m+1)=n!/(n-m)!
此外规定0!=1,n!表示n(n-1)(n-2)…1
84!=6x5x4x3x2x1=720,84!=4x3x2x1=24。
扩展资料
1、假设C(n-1,k)和C(n-1,k-1)为奇数:
则有:(n-1)&k == k;
(n-1)&(k-1) == k-1;
由于k和k-1的最后一位(在这里的位指的是二进制的位,下同)必然是不同的,所以n-1的最后一位必然是1。
现假设n&k == k。
则同样因为n-1和n的最后一位不同推出k的最后一位是1。
因为n-1的最后一位是1,则n的最后一位是0,所以n&k != k,与假设矛盾。
所以得n&k != k。
2、假设C(n-1,k)和C(n-1,k-1)为偶数:
则有:(n-1)&k != k;
(n-1)&(k-1) != k-1;
现假设n&k == k.
则对于k最后一位为1的情况:
此时n最后一位也为1,所以有(n-1)&(k-1) == k-1,与假设矛盾。
而对于k最后一位为0的情况:
则k的末尾必有一部分形如:10; 代表任意个0。
相应的,n对应的部分为:1{*}*; *代表0或1。
而若n对应的{*}*中只要有一个为1,则(n-1)&k == k成立,所以n对应部分也应该是10。
则相应的,k-1和n-1的末尾部分均为01,所以(n-1)&(k-1) == k-1 成立,与假设矛盾。
所以得n&k != k。
由1)和2)得出当C(n,k)是偶数时,n&k != k。
3、假设C(n-1,k)为奇数而C(n-1,k-1)为偶数:
则有:(n-1)&k == k;
(n-1)&(k-1) != k-1;
显然,k的最后一位只能是0,否则由(n-1)&k == k即可推出(n-1)&(k-1) == k-1。
所以k的末尾必有一部分形如:10;
相应的,n-1的对应部分为:1{*}*;
相应的,k-1的对应部分为:01;
则若要使得(n-1)&(k-1) != k-1 则要求n-1对应的{*}*中至少有一个是0.
所以n的对应部分也就为 :1{*}*; (不会因为进位变1为0)
所以 n&k = k。
【#c84怎么算#】到此分享完毕,希望对大家有所帮助。